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Based on concepts of the process of dispersion of clays, the author developed a model of the change
in the filtrational properties of slightly permeable clay rocks in filtration through them of solutions
with a composition different from the initial composition. Of primary importance here are two proc-
esses, i.e., the porosity increase due to dispersion of a part of the porous collector and the increase
in the viscosity of the resulting suspension. It is clear that these two processes oppositely affect the
filtration factor. In the present work, the dynamics of the influence of these processes on the filtration
factor is tracked and the exact analytical solution for the nonstationary problem in a one-dimensional
case is obtained.

In practice, one knows well the phenomenon of the increase in the permeability of slightly permeable
clay rocks in filtration through them of highly mineralized solutions (as a rule, contaminated ones) compared
to slightly mineralized or fresh solutions [1]. This effect and others that are similar in mechanism can be
explained based on the concepts of the resulting structural rearrangement and subsequent dispersion of clay
particles due to chemical reactions (ion exchange of the cations of a solution and the exchange complex of
clay, reoxidation of iron ions with the subsequent change in the initial clay, etc.). A "new" clay is formed,
whose particles are surrounded by a solution which carries an electric charge. Therefore, the motion of the
medium causes the displacement of the particles of the "new" clay together with the flow. It is most simple
to simulate this process as a gradual change of the clay to a suspension whose viscosity can be determined
from theoretical and phenomenological considerations. The possibility of such processes occurring in a stra-
tum is also confirmed by the practice of exploitation of slightly permeable clay-containing oil collectors: in
the course of filtration, the composition of the passing water changes (in cations) and, in addition, the passing
water frequently contains clay microparticles, which then form a layer of clay precipitate [2]. Two processes
turn out to be substantial here for filtration: the increase in the porosity and consequently in the permeability
due to dispersion and the increase in the viscosity of the resulting suspension. Below, we present the simplest
model in which these concepts are realized.

Model. For definiteness, let us consider the reaction of replacement of the calcium cations of an ex-
change complex by sodium that is present in the incoming solution (a situation which occurs frequently in
contamination of underground waters):

Ca(e)
2+ + Na+ → Na(e)

+  + Ca2+ .
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Since here the structural rearrangement of the clay proceeds, the reaction can be considered to be irreversible.
Then the system of equations for this type of process can be written as

∂ (mc)
∂t

 + ∇  (Vc) + 
∂N

∂t
 = 0 , (1)

∂m

∂t
 + ∇  V = 0 , (2)

∂N

∂t
 = γ √ E − N  c , (3)

m − m0 = 
β
ρ

 (N − N0) ,
(4)

V = − 
k (m)
µ (c)

 ∇ p . (5)

Equation (1) is the law of conservation of mass for Na+ ions of the filtered solution; Eq. (2) is the
same for water; Eq. (3) reflects the exchange kinetics; Eq. (4) assigns the relationship between the porosity
and the amount of sodium adsorbed; (5) is the filtration law of a fluid. The correction factor β accounts for
the fact that the dispersing clay microparticle is a macroanion and, consequently, a certain finite number of
elementary acts of cation exchange is needed for dispersion.

The system of equations (1)−(5) is rather complex, and we are unable to solve it in general form.
However, all the physical features of the process can be tracked for a one-dimensional case with the condi-
tion of constancy of the total flow rate. Here we can obtain an exact analytical solution of system (1)−(5).

Solution. Let us consider a one-dimensional case (∇  → ∂ ⁄ ∂x) for V = const. We perform the replace-
ment E − N = M. Then, expressing from Eq. (3)

c = − 
1

γ √M
 
∂M

∂t
 , (6)

it is possible to write (1) in a form that allows the first integral:

mc − 
2V
γ

 
∂ √M
∂x

 − M = ϕ (x) .
(7)

The value is found from the conditions on the leading edge: M = M0 and m = m0. It turns out that

ϕ (x) = − M0 . (8)

Consequently, Eq. (7) has the form




m0 + 

M0 − M

ρe




 
∂M

∂t
 + V 

∂M

∂x
 = γ √M (M0 − M) , (9)
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where we introduced the notation ρe = ρ ⁄ β. The characteristic system takes the form

dt

m0 + 
M0 − M

ρe

 = 
dx

γ
 = 

dM

γ √M  (M0 − M)
 . (10)

The initial and boundary conditions are

t = 0 :   c = 0 ,   M = M0 ;   x = 0 :  c = c1 . (11)

The solution is found for two stages. In the first stage (to the completion of the reaction at the point x = 0),
the solution is determined by conditions (11). Here

V

γ √M0

 ln 




√M0  + √M
√M0  − √M




 − x = 

V

γ √M0

 ln 







4 √M0

γc1 



t − 

m0

V
 x




 − 1






 , (12)

c = 
4 (M0 − M)






4 √M0 − γc1 




t − 

m0

V
 x




 






  γ 




t − 

m0

V
 x




 . (13)

Relations (12) and (13) yield the form of the solution up to the moment T = 2√M0
 ⁄ (γc1) (the com-

pletion of the reaction at the point x = 0). After this, beginning from x = 0, a region is formed in which the
reaction does not proceed. The boundary of this region moves; the velocity of its motion (of the trailing edge)
is determined from the condition of balance for the calcium ions

  ∫ 
x2

x1

 m (c1 − c) dx +  ∫ 
x2

x1

 Mdx = M0x1
(14)

and appears to be equal to

Vb = 
Vc1

M0 + m0c1
 . (15)

The solution for t > T is given for two regions (beginning from the leading edge) and is defined by
relations (12) and (13) in the first region and by the condition M = 0 for the trailing edge in the second
region:

V

γ √M0

 ln 




√M0  + √M
√M0  − √M




 − x = 

m0Vb

γ √M0

 ln 




√M0  + √M
√M0  − √M




 − Vb (t − T) , (16)

c = 
Vb (M0 − M)

V − m0Vb
 . (17)
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The point of contact of the two regions xc moves according to the equation

t − 
m0

V
 xc = 

2 √M0

γc1
 . (18)

Relation (18) follows from the continuity condition of the function M. It turns out that the concentration c at
the point xc is also continuous and continuously differentiable. It is of interest that the length of the region
between the leading edge x1 = Vt ⁄ m0 and the contact point l = x1 − xc is constant:

l = 
2V √M0

γm0c1
 . (19)

We will consider the process of dispersion of the clay particles in a generalized sense, i.e., either as
the swelling or the dispersion proper of the clay. In both cases, a portion of the clay changes to a mobile
state, i.e., it forms a suspension of a certain viscosity. The following two processes proceed simultaneously:

1) the increase in the porosity due to the transition of a fraction of the particles of the porous skele-
ton to a mobile state and its related increase in the penetration factor;

2) the increase in the viscosity of the resulting suspension with increase in the concentration of the
suspension.

The porosity growth in the process is described by Eqs. (3) and (4). To relate the penetration factor
to the porosity, we select the simple linear dependence

k (m) = Am ,   A = const , (20)

which in many cases agrees well with the field data [3].
In order to determine the dependence of the suspension viscosity on the concentration, we use the

Mooney formula recommended in [4] and take the concentration of the suspension to be a multiple of the
concentration of the calcium ions in the solution:

µ (c) = µ0 exp 




a (c1 − c)
1 − δ (c1 − c)




 ;   µ0, a, δ − const . (21)

Using the solution (12)−(17) obtained, it is possible to plot, at an arbitrary point x, the filtration factor
K = k ⁄ µ versus the concentration of the solution. The form of the resulting dependence is given in Fig. 1.

Fig. 1. Filtration factor vs. mineralization of the pore solution.
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The parameters a, δ, and µ0 are chosen in such a way as to provide a fivefold increase in the initial value of
the filtration factor. The curve given in Fig. 1 is in good agreement with the experiment ([1], p. 119].

It follows from Eq. (21) that when the concentration c reaches the value of (c1 − 1 ⁄ δ) at the point x,
we obtain the total cessation of filtration. This case where further filtration becomes impossible can be inter-
preted as limiting swelling.

Thus, the proposed mathematical model of variation in the filtration properties of slightly permeable
clay rocks due to the dispersion of the clay component is based on the assumption of the interrelation be-
tween the processes of ion exchange (in particular, replacement of bivalent cations by univalent cations of the
Na+-type) and the subsequent dispersion of the clay particles. This assumption is confirmed by the experi-
mental data [5]. The calculations performed by means of the model suggested also agree well with the ex-
perimental material (see Fig. 1).

NOTATION

m, porosity; c, concentration of sodium ions in the solution; N, concentration of sodium ions in the
composition of the solid phase; V, filtration velocity; t, time; E, exchange capacity; γ, reduced reaction con-
stant; ρ, clay density; β, correction factor; p, pressure in the fluid; k, permeability; µ, fluid viscosity. Sub-
scripts: e, belongs to the exchange complex of clay; 0, initial state; b, trailing edge; c, contact point of two
solutions.
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